
MFPS 2017

A Game Semantics of
Concurrent Separation Logic

Paul-André Mellièsa Léo Stefanescob

a IRIF, CNRS, Université Paris Diderot
b École Normale Supérieure de Lyon

Abstract

In this paper, we develop a game-theoretic account of concurrent separation logic. To every execution trace
of the Code confronted to the Environment, we associate a specification game where Eve plays for the Code,
and Adam for the Environment. The purpose of Eve and Adam is to decompose every intermediate machine
state of the execution trace into three pieces: one piece for the Code, one piece for the Environment, and
one piece for the available shared resources. We establish the soundness of concurrent separation logic by
interpreting every derivation tree of the logic as a winning strategy of this specification game.

1 Introduction

Concurrent separation logic (CSL) is an extension of Reynold’s separation logic [12]
formulated by O’Hearn [10] to establish the correctness of concurrent imperative
programs with shared memory and locks. This specification logic enables one to
establish the good behavior of these programs in an elegant and modular way, thanks
to the frame rule of separation logic. A sequent of concurrent separation logic

r1 : P1, . . . , rn : Pn ` {P}C {Q}

consists of a Hoare triple {P}C{Q} together with a context Γ = r1 : P1, . . . , rn : Pn
which declares a number of resource variables rk (or mutexes) together with the
CSL formula Pk which they satisfy as invariant. The validity of the program logic
relies on a soundness theorem, which states that the existence of a derivation tree in
concurrent separation logic π

...

r1 : P1, . . . , rn : Pn ` {P}C {Q}
ensures (1) that the concurrent program C will not produce any race condition
at execution time, and (2) that the program C will transform every initial state
satisfying P into a state satisfying Q when it terminates, as long as each resource rk
allocated in memory satisfies the CSL invariant Pk. The soundness of the logic was
established by Brookes in his seminal papers on the trace semantics of concurrent

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Mellies and Stefanesco

separation logic [5,6]. His soundness proof was the object of great attention in the
community, and it was revisited in a number of different ways, either semantic [13],
syntactic [2] or axiomatic [7] and formalised in proof assistants. One main technical
challenge in all these proofs of soundness is to establish the validity of the concurrent
rule:

Γ ` {P1}C1 {Q1} Γ ` {P2}C2 {Q2}
Concurrent Rule

Γ ` {P1 ∗ P2}C1 ‖ C2 {Q1 ∗Q2}
and of the frame rule:

Γ ` {P}C {Q}
Frame Rule

Γ ` {P ∗R}C {Q ∗R}
In this paper, we establish the validity of these two rules (and of CSL at large) based
on a new approach inspired by game semantics, which relies on the observation that
the derivation tree π of CSL defines a winning strategy [π] in a specification game.
As we will see, the specification game itself is derived from the execution of the
code C and its interaction with the environment (called the frame) using locks on
the shared memory. The specification game expresses the usual rely-and-guarantee
conditions as winning conditions in an interactive game played between Eve (for the
code) and Adam (for the frame).

In the semantic proofs of soundness, two notions of “state” are usually considered,
besides the basic notion memory state which describes the state of the variables
and of the heap: (1) the machine states which are used to describe the execution of
the code, and in particular include information about the status of the locks, and
(2) the logical states which include permissions and other information invisible at
the execution level, but necessary to specify the states in the logic. In particular,
the tensor product ∗ of separation logic requires information on the permissions,
and it is thus defined on logical states, not on machine states. The starting point
of the paper is the observation that there exists a third notion of state, which we
call separated state, implicitly at work in all the semantic proofs of soundness. A
separated state describes which part of the global (logical) state of the machine is
handled by each component interacting in the course of the execution. It is defined
as a triple (σC ,σ, σF) consisting of

• the logical state σC ∈ LState of the code,
• the logical state σF ∈ LState of the frame,
• a function σ : {r1, . . . , rn} → LState + {C,F} which tells for every resource
variable r whether it is locked and owned by the code, σ(r) = C, locked and
owned by the frame, σ(r) = F , or available with logical state σ(r) ∈ LState.

This leads us to a “span”

machine states separated states logical statesrefines refines (1)

where the two notions of machine state and of logical state are “refined” by the notion
of separated state, which conveys information about locks (as machine states) and
about permissions (as logical states). Namely, every separated state

(σC ,σ, σF) ∈ SState

2

Mellies and Stefanesco

refines the logical state~(σC ,σ, σF) defined by the separation tensor product

~(σC ,σ, σF)
def
= σC ∗

{
~

r∈dom(σ)

σ(r)
}
∗ σF (2)

where dom(σ) denotes the set of resources available in σ, in the sense that σ(r) 6=
C,F . Similarly, every separated state (σC ,σ, σF) refines a machine state (µ,L)

defined as the memory state µ underlying the logical state (2) just constructed,
plus the set of locked resources L = domC(σ)] domF(σ), see §8 for details. In the
same way as the notion of logical state is necessary to define the tensor product
∗ of separation logic, and thus to specify the states, the shift from machine states
to separated states is necessary to specify the code, and the way it interacts with
its environment and with its resources. Our point here is that the formulas P and
Q of separation logic in a Hoare triple Γ ` {P}C {Q} do not specify the logical
state σ =~(σC ,σ, σF) ∈ LState of the machine itself, but the fragment σC of this
logical state σ owned by the code C at the beginning and at the end of the execution.
The notion of separated state is thus at the very heart of the very concept of Hoare
triple in separation logic.

We follow the following track in the paper. After discussing the related work, we
formulate the two notions of machine states and of machine instructions in §3. This
enables us to define the notion of execution traces on machine states in §4 and a
number of algebraic operations on them. The trace semantics of concurrent programs,
and their interpretation as transition systems, is then formulated in §5 and §6. Once
the notion of machine state has been used to describe the trace semantics of the
language, we move to the logical side of the span, and formulate the notions of
logical state in §7 and the notion of separated state in §8. In §10, we explain how to
associate to every execution trace t a specification game played on the paths of the
graph of separated states, which is defined in §9. The moves of those games express
the ownership discipline enforced by separation logic, and in particular the discipline
associated to the locks in concurrent separation logic. Finally, we show in §11 that
CSL is sound by proving that every derivation tree of the logic defines a strategy,
which lifts each step of the Code of an execution trace into the graph of separated
states.

2 Related Work

Several proofs of soundness have already been given for concurrent separation logic.
The first proof of correctness was designed by Brookes in [5,6] using semantic ideas.
In his proof, every program C is interpreted as a set of “action traces”, defined as
finite or infinite sequences of “actions” that look like:

read 71 from x, read 36 from y, acquire lock r,

An interesting feature of the model is that these action traces do not mention (at
least explicitly) the machine states produced by the Code at execution time. The
environment is taken into account through the existence of non sequentially consistent
traces such as

write 89 in x, read 14 from x

3

Mellies and Stefanesco

in the model. The idea is that the Environment presumably changed the value of the
variable x between the two actions of the Code. Separation in the logic enables one
to decompose actions traces into local computations, in order to reflect the program’s
subjective view of the execution.

Vafeiadis gave another proof of correctness [13] based on more directly operational
intuitions. In his proof, the Code is interpreted as a transition system whose vertices
are pairs (C, σ) consisting of the Code C and of the state σ of the memory, and
where edges are execution steps. The core of the soundness proof is that each
step of the execution preserves a decomposition of the heap into three parts, which
correspond respectively to the Code, the resources, and the Frame. The proof is
done by induction on the derivation tree π establishing the triple Γ ` {P}C {Q}
in concurrent separation logic. The idea of using separated states thus comes from
Vafeiadis’ proof, which is the closest to ours. One difference, however, besides
the game-theoretic point of view we develop, is that we have a more intensional
description of separated states, provided by the function σ which tracks the states
of each of the available locks.

In contrast to the semantic proofs mentioned above, Balabonski, Pottier and
Protzenko [2] developed a purely syntactic proof of correctness for Mezzo, a functional
language equipped with a type-and-capability system based on concurrent separation
logic. The soundness of the logic follows in their approach from a progress and a
preservation theorem on the type system of Mezzo.

Our focus in this work is to develop a game-theoretic approach to concurrent
separation logic. For that reason, we prefer to keep the logic as well as the concurrent
language fairly simple and concrete. In particular, we do not consider more recent,
sophisticated and axiomatic versions of the logic, like Iris [8,9].

3 Machine states and machine instructions

The purpose of this section is to introduce the notions of machine state and of
machine instruction which will be used all along the paper. We suppose given
countable sets Var of variable names, Val of values, Loc ⊆ Val of memory locations,
and LockName of resources. In practice, Loc = N and Val = Z.

Definition 3.1 (Memory state) A memory state µ is a pair (s, h) of partial func-
tions with finite domains s : Var ⇀fin Val and h : Loc ⇀fin Val called the stack s
and the heap h of the memory state µ. The set of memory states is denoted State.
The domains of the partial function s and of h are noted vdom(µ) and hdom(µ)

respectively, and we write dom(µ) for their disjoint union.

Definition 3.2 (Machine state) A machine state s = (µ,L) is a pair consisting
of a memory state µ and of a subset of resources L ⊆ LockName, called the lock
state, which describes the subset of locked resources in s. The set of machine states
is denoted MState.

A machine step is defined as a labelled transition between machine states, which can
be of two different kinds:

s s′m s s′m

4

Mellies and Stefanesco

depending on whether the instruction m ∈ Instr has been executed successfully (on
the left) or it has produced a runtime error (on the right). We write m : s s′

when we do not want to specify whether the instruction has produced a runtime
error. The machine instructions which label the machine steps are defined below:

m ::= x := E | x := [E] | [E] := E′ | nop | x := alloc(E) | dispose(E) | P (r) | V (r)

where x ∈ Var is a variable, r ∈ LockName is a resource variable, and E,E′ are
arithmetic expressions with variables. Typically, the instruction x := E assigns to the
variable x the value E(µ) of the expression E in the memory state µ, the instruction
P (r) locks the resource variable r when it is available, while the instruction V (r)

releases it when it is locked, as described below:
E(µ) = v

(µ,L) (µ[x 7→ v], L)x:=E

r /∈ L

(µ,L) (µ,L] {r})P (r)

r /∈ L

(µ,L] {r}) (µ,L)
V (r)

Thanks to the inclusion Loc ⊆ Val, an expression E may also denote a location.
In that case, [E] refers to the value of the location E in memory. The instruction
nop (for no-operation) does not alter the logical state, while x := alloc(E) allocates
(in a non-deterministic way) some memory space on the heap, initializes it with the
value of the expression E, and returns the address of the location to the variable x,
while dispose(E) deallocates the location with address E.

It will be convenient in the sequel to write lock+(m) for the set of locks which are
taken by an instruction m, that is, lock+(m) = {r} if m = P (r) and lock+(m) = ∅
otherwise; lock−(m) is the set of locks which are released by the instruction m, that
is, lock−(m) = {r} if m = V (r) and lock−(m) = ∅ otherwise.

4 Execution traces

Now that the notion of machine state has been introduced, the next step towards the
interpretation of programs is to define the notion of execution trace, with two kinds
of transitions: the even transitions “played” by the Code, and the odd transitions
“played” by the Environment.

Definition 4.1 (Traces) A trace t is a sequence of machine states

s1
env−−→ s2

m1−−→ s3
env−−→ . . .

env−−→ s2p
mp−−→ s2p+1

env−−→ s2p+2

whose even transitions

s2k
mk−−−→ s2k+1 1 ≤ k ≤ p

are labelled by an instruction mk ∈ Instr such that s2k s2k+1
mk and whose

last transition is played by the environment. The set of traces is denoted by Traces.

We write ∂0t = s1 and ∂1t = s2p+2 for the initial and the final states of a trace
t ∈ Traces, respectively. The length len(t) = p is defined as the number of Code
transitions in the trace, and

t[k] = s2k
mk−−−→ s2k+1

denotes the k-th even transition of the trace t, for 1 ≤ k ≤ len(t). Observe that a
trace t always starts and stops by an Environment transition, and that its number of

5

Mellies and Stefanesco

transitions is equal to 2× len(t) + 1. We point out the following fact which we will
often use in our proofs and constructions:

Proposition 4.2 A trace t ∈ Traces is characterized by its initial state ∂0t and by
its final state ∂1t, together with the sequence of Code transitions t[k] for 1 ≤ k ≤ len(t).

We introduce now a number of important algebraic constructions on execution
traces, whose purpose is to reflect at the level of traces the sequential and parallel
composition of programs.

Definition 4.3 (Sequential composition) Given two traces t1, t2 ∈ Traces such
that ∂1(t1) = ∂0(t2), one defines t1 · t2 ∈ Traces as the trace of length len(t1)+ len(t2)

with initial state ∂0(t1) and final state ∂1(t2), and with even transitions defined as

(t1 · t2)[k] =

{
t1[k] if 1 ≤ k ≤ p,
t2[k − p] if p+ 1 ≤ k ≤ p+ q.

Definition 4.4 (Restriction) Let Tracesp denote the set of traces of length p.
Every increasing function f : {1, ..., p} → {1, ..., q} induces a restriction function

f∗ : Traces q −→ Traces p

which transports a trace t of length q to a coinitial and cofinal trace f∗(t) of length p

∂0f
∗(t) = ∂0t ∂1f

∗(t) = ∂1t

defined by the instructions f∗(t)[k] = t[f(k)] for 1 ≤ k ≤ p.

Definition 4.5 (Shuffle) A shuffle of two natural numbers p ∈ N and q ∈ N is a
monotone bijection ω : {1, . . . , p}] {1, . . . , q} → {1, . . . , p+ q}. The set of shuffles
of p and q is denoted Shuffles(p, q).

Every shuffle ω ∈ Shuffles(p, q) induces a pair of increasing functions

ω1 : {1, ..., p} → {1, . . . , p+ q} and ω2 : {1, ..., q} → {1, . . . , p+ q}

defined by restricting ω to {1, ..., p} and to {1, ..., q}, respectively. From this follows
immediately that

Proposition 4.6 Every shuffle ω ∈ Shuffles(p, q) induces a function

ω∗ : Tracesp+q −→ Tracesp ×Tracesq

which transports a trace t of length p + q to the pair (ω∗1(t), ω∗2(t)) ∈ Tracesp ×
Tracesq.

Definition 4.7 The parallel composition t1 ‖ t2 is the set of traces t ∈ Traces such
that ω∗(t) = (t1, t2) for some shuffle ω ∈ Shuffles(len(t1), len(t2)).

Note that every trace t in t1 ‖ t2 satisfies len(t) = len(t1) + len(t2) and more
importantly, that the parallel composition t1 ‖ t2 of two traces t1 and t2 is empty
whenever the two traces t1 and t2 are not coinitial and cofinal.

The purpose of our last construction hide[r] is to “hide” the name of a resource
variable r ∈ LockName in an execution trace.

Definition 4.8 The function hide[r] : Traces→ Traces transforms every trace by
applying the function

(µ,L) 7−→ (µ,L \ {r}) : MState −→MState

6

Mellies and Stefanesco

to each machine state of the original trace, and the function

m 7−→

{
nop if m = P (r) or V (r)

m otherwise
: Instr −→ Instr

to the instructions of the trace.

5 Transition Systems

At this stage, we are ready to introduce the notion of transition system which we
will use in order to describe the traces generated by a program of our concurrent
language. Among these execution traces, one wishes to distinguish (1) the traces
which terminate and return from (2) the other traces which are not yet finished or
terminate and abort. This leads us to the following definition of transition system:

Definition 5.1 (Transition Systems) A transition system T = (T,
∣∣T ∣∣) is a set

of traces T ⊆ Traces closed under prefix, together with a subset
∣∣T ∣∣ ⊆ T , whose

traces are said to return.

We explain below how to lift to transition systems the algebraic operations defined
on traces in the previous section §4.

Definition 5.2 The sequential composition of two transition systems T and T′, is
defined as the transition system T; T′ below:

T ;T ′ = T ∪ {t · t′ | t ∈
∣∣T ∣∣, t′ ∈ T ′ and ∂1t = ∂0t

′}∣∣T ;T ′
∣∣ = {t · t′ | t ∈

∣∣T ∣∣, t′ ∈ |T ′| and ∂1t = ∂0t
′}

Definition 5.3 The parallel composition of two transition systems T and T′, is
defined as the transition system T ‖ T′ below:

T1 ‖ T2 =
⋃
ti∈Ti

t1 ‖ t2
∣∣T1 ‖ T2

∣∣ =
⋃

ti∈
∣∣Ti ∣∣ t1 ‖ t2

Definition 5.4 The transition system hide[r](T) associated to a transition system T

and to a lock r ∈ LockName is defined as follows:

hide[r](T) = {hide[r](t) | t ∈ T}
∣∣hide[r](T)

∣∣ = {hide[r](t) | t ∈
∣∣T ∣∣}.

Note that every instruction m ∈ Instr induces a transition system JmK defined in
the following way:

JmK = {s1
env−−→ s2

m−→ s3
env−−→ s4 | s2 s3

m }∣∣JmK
∣∣ = {s1

env−−→ s2
m−→ s3

env−−→ s4 | s2 s3
m }

The intuition is that the program interpreted by JmK executes the instruction m after
the environment has made the transition s1

env−−→ s2 and returns when the machine
step s2

m−→ s3 is succesful, and does not abort. The following algebraic operation on
transition systems reflects the computational situation of a program taking a lock r
before executing, and releasing the lock r in case the program returns.

Definition 5.5 The transition system inside[r](T) associated to a transition sys-

7

Mellies and Stefanesco

tem T and to a lock r ∈ LockName is defined as follows:

inside[r](T) = JP (r)K; T; JV (r)K.

The following operation on transition systems will enable us to interpret conditional
branching on concurrent programs.

Definition 5.6 The transition system whentrue[P](T) associated to a transition
system T = (T,

∣∣T ∣∣) and a predicate P : MState→ {true, false,abort} on memory
states is defined as follows:

whentrue[P](T) = {t ∈ T |P (∂0t) = true}∣∣whentrue[P](T)
∣∣ = {t ∈

∣∣T ∣∣ |P (∂0t) = true}

where ∂0t = s2 denotes the first state played by Code in the trace t.

The transition system whenfalse[P](T) is defined similarly, by replacing true by false

in the definition. A subtle but important aspect of the interpretation of conditional
branching in the language is that the evaluation of a boolean expression B may not
succeed, typically because one of its variables x ∈ Var is not allocated. In that
case, the evaluation produces an exception which is then handled by the operating
system. This abort case is handled in our trace semantics by the definition of a
dedicated transition system called whenabort[P,C], whose construction is detailed in
the Appendix[1].

6 Trace semantics of the concurrent language

Now that we have defined the basic operations on transition systems, we are ready
to define the operational and interactive semantics of our concurrent language. The
language is constructed with Boolean expressions B, arithmetic expressions E and
commands C, using the grammar below:

B ::= true | false | B ∧B′ | B ∨B′ | E = E′

E ::= 0 | 1 | . . . | x | E + E′ | E ∗ E′

C ::= x := E | x := [E] | [E] := E′ | C;C ′ | C1 ‖ C2 | skip
| whileB do C | resource r do C | with r whenB do C

| ifB then C1 else C2 | x := alloc(E) | dispose(E)

The parallel composition operator C1 ‖ C2 enables the two programs C1 and C2 to
interact concurrently through mutexes called resources. A resource r is declared
using resource r and acquired using withrwhenB doC, which waits for the Boolean
expression B to be true in order to proceed. Of course, a mutex can be held by at
most one execution thread at any one time.

In the semantic approach we are following, every command C is translated into a
transition system JCK which describes the possible interactive executions of C, and
whether they return.

Code C Transition system JCKtranslation

The interpretation JCK is defined by structural induction on the syntax of the

8

Mellies and Stefanesco

command C. To each leaf node C, one associates an instruction m ∈ Instr

x := E | x := [E] | [E] := [E′] | nop | x := alloc(E) | dispose(E)

which defines the transition system JCK def
= JmK. The semantics of non-leaf commands

is then defined using the algebraic operations on transition systems introduced in §5:

JC ‖ C ′K def
= JCK ‖ JC ′K, JC;C ′K def

= JCK; JC ′K,

Jresource r doCK def
= hide[r]

(
JCK

)
,

Jwith r whenB do CK def
= whentrue[B]

(
inside[r]

(
JCK

))
∪ whenabort[B,C ′]

where C ′ = with r whenB do C in the last part of the definition, and finally

JifB then C1 else C2K
def
= whentrue[B]

(
JnopK

)
; JC1K ∪ whenfalse[B]

(
JnopK

)
; JC2K

∪ whenabort[B, ifB then C1 else C2],

and the while loop

JwhileB do CK def
=
⋃
n≥0

Fn(∅)

is defined as the least fixpoint of the continuous function F : Trans→ Trans below:

F (T) = whentrue[B]
(
JnopK

)
; JCK; T ∪ whenfalse[B]

(
JnopK

)
∪

whenabort[B, whileB do C].

7 Logical States

As we explained in the introduction, reasoning about concurrent programs in sep-
aration logic requires introducing an appropriate notion of logical state, including
information about permissions. The version of concurrent separation logic we consider
is almost the same as in its original formulation by O’Hearn and Brookes [10,5]. One
difference is that we benefit from the work in [3,4,11] and use the permissions and
the Ownp(x) predicate in order to handle the heap as well as variables in the stack.
So, we suppose given an arbitrary partial cancellative commutative monoid Perm

that we call the permission monoid, following [3]. We require that the permission
monoid contains a distinguished element > which does not admit any multiple, ie.
∀x ∈ Perm,> · x is not defined. The idea is that the permission > is required for a
program to write somewhere in memory. The property above ensures that a piece of
state cannot be written and accessed (with a read or a write) at the same time by
two concurrent programs, and therefore, that there is memory safety and no data
race in the semantics. The set LState of logical states is defined in a similar way as
the set State of memory states, with the addition of permissions:

LState = (Var ⇀fin Val×Perm)× (Loc ⇀fin Val×Perm)

One main benefit of permissions is that they enable us to define a separation tensor
product σ ∗ σ′ between two logical states σ and σ′. When it is defined, the logical
state σ ∗ σ′ is defined as a partial function with domain

dom(σ ∗ σ) = dom(σ) ∪ dom(σ′)

9

Mellies and Stefanesco

σ � Ownp(x) ⇐⇒ ∃v ∈ Val, σ(x) = (v, p)

σ � E1 = E2 ⇐⇒ JE1K = JE2K ∧ fv(E1 = E2) ⊆ vdom(h)

σ � P ⇒ Q ⇐⇒ (σ � P)⇒ (σ � Q)

σ � P ∧Q ⇐⇒ σ � P et σ � Q
σ � P ∗Q ⇐⇒ ∃σ1σ2, σ = σ1 ∗ σ2 et σ1 � P et σ2 � Q

Figure 1. Semantics of the predicates of concurrent separation logic

in the following way, for a ∈ Varq Loc:

σ ∗ σ′(a) =


σ(a) if a ∈ dom(σ) \ dom(σ′)

σ′(a) if a ∈ dom(σ′) \ dom(σ)

(v, p · p′) if σ(a) = (v, p) and σ′(a) = (v, p′)

The tensor product σ∗σ′ of the two logical states σ and σ′ is not defined otherwise. In
other words, if the tensor product is well defined, then the memory states underlying
σ and σ′ agree on the values of the shared variables and heap locations. The syntax
and the semantics of the formulas of Concurrent Separation Logic is the same as in
Separation Logic. The grammar of formulas is the following one:

P,Q,R, J ::= emp | true | false | P ∨Q | P ∧Q | ¬P | ∀X.P | ∃X.P
| P ∗Q | Ownp(x) | E1 7→p E2

The semantics of the formulas is expressed as the satisfaction predicate σ � P defined
in Figure 1. The proof system underlying concurrent separation logic is a sequent
calculus on sequents defined as Hoare triples of the form

Γ ` {P}C {Q},

where C ∈ Code, P , Q are predicates, and Γ is a context, defined as a partial function
with finite domain from the set LockName of resource variables to predicates.
Intuitively, the context Γ = r1 : J1, . . . , rk : Jk describes the invariant Ji satisfied by
the resource variable ri. The purpose of these resources is to provide the fragments
of memory shared between the various threads during the execution. The inference
rules are given in Figure 2. The inference rule Res associated to resource r do C

moves a piece of memory which is owned by the Code into the shared context Γ,
which means it can be be accessed concurrently inside C. However, the access to
said piece of memory is mediated by the with construct, which grants temporary
access under the condition that one must give it back (rule With). Notice that in
the rule Conj, the context Γ = r1 : J1, . . . , rk : Jk is required to be precise, in the
sense that each of the predicates Ji is precise.

Definition 7.1 (Precise predicate) A predicate P is precise when, for any σ ∈
LState, there exists at most one σ′ ∈ LState such that ∃σ′′, σ = σ′ ∗σ′′ and σ′ � P .

8 Separated states

We now introduce our third notion of state, which display which region of (logical)
memory belongs to the Code, which region belongs to the Frame, and which region
is shared. We suppose given a finite set LockName of resource variables.

10

Mellies and Stefanesco

Aff
Γ ` {Own>(x) ∗X = E}x := E {Own>(x) ∗ x = X}

Store
Γ ` {E 7→ −} [E] := E′ {E 7→ E′}

x /∈ fv(E)
Load

Γ ` {E 7→p v ∗Own>(x)}x := [E] {E 7→p v ∗Own>(x) ∗ x = v}

Γ ` {P}C {Q} Γ ` {Q}C′ {R}
Seq

Γ ` {P}C;C′ {R}
P ⇒ def(B) Γ ` {P ∧B}C1 {Q} Γ ` {P ∧ ¬B}C2 {Q} If

Γ ` {P} ifB then C1 else C2 {Q}

Γ is precise Γ ` {P1}C {Q1} Γ ` {P2}C {Q2} Conj
Γ ` {P1 ∧ P2}C {Q1 ∧Q2}

Γ, r : J ` {P}C {Q}
Res

Γ ` {P ∗ J} resource r do C {Q ∗ J}

P ⇒ def(B) Γ ` {(P ∗ J) ∧B}C {Q ∗ J}
With

Γ, r : J ` {P} with r whenB do C {Q}
Γ ` {P1}C1 {Q1} Γ ` {P2}C2 {Q2} Par

Γ ` {P1 ∗ P2}C1 ‖ C2 {Q1 ∗Q2}

Γ ` {P}C {Q}
Frame

Γ ` {P ∗R}C {Q ∗R}

Figure 2. Inference rules of Concurrent Separation Logic

Definition 8.1 The separated states are the triples

(σC ,σ, σF) ∈ LState× (LockName→ LState + {C,F})× LState

such that the state below is defined:

σC ∗
{
~

r∈dom(σ)

σ(r)
}
∗ σF

where dom(σ) = {r ∈ LockName | σ(r) ∈ LState},
domC(σ) = {r ∈ LockName | σ(r) = C},
domF(σ) = {r ∈ LockName | σ(r) = F}.

We say that a separated state (σC ,σ, σF) combines into a machine state s = (µ,L)

precisely when both L = domC(σ)] domF(σ) and the memory state µ ∈ State is
equal to the image of

σC ∗
{
~

r∈dom(σ)

σ(r)
}
∗ σF ∈ LState (3)

under the function U : LState→ State which forgets the permissions. Note that by
definition, every separated state (σC ,σ, σF) combines into a unique machine state,
which we write for concision (µ,L) =~(σC ,σ, σF).

9 The graphs of machine and separated states

In this section, we introduce the two labeled graphs G(MState) and G(SState) of
machine states and of separated states, and construct a graph homomorphism

~ : G(SState) −→ G(MState) (4)

which maps every separated state (σC ,σ, σF) to its combined machine state (σ, L),
in the way described in the introduction.

Definition 9.1 The graph of machine states G(MState) is the graph whose vertices
are the machine states s ∈MState and whose edges are either Code or Environment
transitions of the following kind:

11

Mellies and Stefanesco

• a Code transition s
m−→ s′ for every machine step s s′m ,

• an Environment transition s
env−−→ s′ for every pair s, s′ ∈MState of machine

states, and where env is just a tag indicating that the transition has been fired
by the Environment.

Note that a trace t ∈ Traces (see Def. 4.1) is the same thing as an alternating path
starting and ending with an Environment edge in the graph G(MState).

Definition 9.2 The graph of separated states G(SState) is the graph whose vertices
are the separated states and whose edges are either Eve moves or Adam moves of the
following kind:

• Eve moves of the form

(σC ,σ, σF)
m−−→ (σ′C ,σ

′, σF)

labeled by an instruction m ∈ Instr such that

~(σC ,σ, σF) ~(σ′C ,σ
′, σF)m

between machine states, and such that the following conditions on locked resources
are moreover satisfied:

∀r /∈ lock(m), σ(r) = σ′(r),

∀r ∈ lock+(m), r ∈ dom(σ) ∧ r ∈ domC(σ′),

∀r ∈ lock−(m), r ∈ domC(σ) ∧ r ∈ dom(σ′);

• Adam moves of the form

(σC ,σ, σF)
env−−−→ (σC ,σ

′, σ′F)

where env is just a tag, and moreover

domC(σ′) = domC(σ).

The definition of the vertices and of the edges of the graph of separated states
G(SState) is designed to ensure that there exists a graph homomorphism (4) which
maps every Eve move to a Code transition, and every Adam move to an Environment
transition. The graph homomorphism (4) enables us to study how an execution
trace t ∈ Traces defined as a path in G(MState) may be “refined” into a separated
execution trace p living in the graph of G(SState) of separated states, and such that
t =~ p. In that situation, we use the following terminology:

Definition 9.3 We say that a path p in the labeled graph G(SState) combines
into a trace t ∈ Traces in the labeled graph G(MState) when t =~ p.

Note that a path p which combines into a trace t ∈ Traces is alternated between
Eve and Adam moves, and that it starts and stops with an Adam move.

10 Separation games

In this section, we explain how to associate to every trace t ∈ Traces a separation
game SGame(t) on which Eve and Adam interact and try to “justify” every transition
played in the execution trace t by the Code or by the Environment, by lifting it to a

12

Mellies and Stefanesco

separated execution trace p which combines into t.

Definition 10.1 (Game) A game A is a triple A = (BoardA,PolA,PlaysA) consist-
ing of a graph BoardA = (V,E, ∂0, ∂1) with source and target functions ∂0, ∂1 : E → V ,
and whose edges are called moves: of a function PolA : E → {−1,+1} which assigns
a polarity +1 to every move played by Eve (Player) and −1 to every move played by
Adam (Opponent); of a prefix-closed set PlaysA of finite paths, called the plays of the
game A. One requires moreover that every play of the game

x1
e1−→ x2

e2−→ · · · −→ xn
en−→ xn+1

is alternating in the sense that PolA(ei) = (−1)i for 1 ≤ i ≤ n, and that it starts and
stops with an Adam move.

A vertex in a game A is called initial when there exists a play s ∈ PlaysA with
x = ∂0(s) as source. The set of initial vertices of a game A is noted InitA. We take
below the most general and liberal definition of a strategy. In particular, a strategy
in that sense does not need to be deterministic.

Definition 10.2 (Strategy) A strategy of a game is a prefix-closed set of plays.

Every execution trace t ∈ Traces induces a game defined below, called the separation
game associated to t and noted SGame(t).

Definition 10.3 (Separation Game) The game SGame(t) = (Board,Pol,Plays)
is defined as the graph Board = G(SState) with plays in Plays defined as the paths

p : (σC ,σ, σF)
∗−→ (σ′C ,σ

′, σ′F)

in G(SState) which combine into a path in G(MState)

~p : ~(σC ,σ, σF)
∗−→~(σ′C ,σ

′, σ′F)

prefix of the trace t ∈ Traces. The polarity Pol of the moves is derived from the
polarity Eve (+1) and Adam (−1) of the edges of the graph Board = G(SState) of
separated states.

A play of the separation game SGame(t) may be thus seen as a “psychoanalysis”
or rather a “couple therapy” where Eve and Adam try and justify a posteriori
what has just happened in the execution trace t ∈ Traces played by the Code (on
the side of Eve) and the Environment (on the side of Adam). At each transition
m : (σ, L) → (σ′, L′) performed by the Code in the execution trace t ∈ Traces

starting from a machine state (σ, L) = ~(σC ,σ, σF), Eve has to play a move
m : (σC ,σ, σF)→ (σ′C ,σ

′, σ′F) which “justifies” the transition by decomposing the
machine state (σ′, L′) into a separated state (σ′C ,σ

′, σ′F). And symmetrically for
Adam and the Environment.

11 Soundness theorem

At this stage, we establish our soundness theorem for concurrent separation logic,
by interpreting every derivation tree as a winning strategy in a specific separation
game. We suppose given a Hoare triple Γ ` {P}C {Q}. We start by describing the
winning condition on the separation game SGame(t) associated to an execution
trace t ∈ JCK in the operational semantics of C.

13

Mellies and Stefanesco

Definition 11.1 A separated predicate is a triple P = (P,Γ, Q) consisting of two
predicates P and Q and of a context Γ = r1 : J1, . . . , rk : Jk of variable resources.

Definition 11.2 We write

(σC ,σ, σF) � (P,Γ, Q)

and say that the separated state (σC ,σ, σF) satisfies the separated predicate P =

(P,Γ, Q) precisely when σC � P and σF � Q and ∀r ∈ dom(σ),σ(r) � ∆(r).

We suppose from now on that the execution trace t ∈ JCK is of length p, and introduce
the sequence P1, . . . ,P2p+2 of separated predicates, defined as:

P1 = (P,Γ, true) Pi = (true,Γ, true) P2p+2 = (Q,Γ, true)

for 1 < i < 2p+ 1 when the execution trace t ∈
∣∣JCK

∣∣ is returning; and defined as

P1 = (P,Γ, true) Pi = (true,Γ, true) P2p+2 = (true,Γ, true)

for 1 < i < 2p + 2 when the execution trace t 6∈
∣∣JCK

∣∣ is not returning. Here, we
write true for the constant predicate which is true for every logical state.

Definition 11.3 (Winning condition) A play

(σ1
C ,σ

1, σ1
F)

env−−−→ (σ2
C ,σ

2, σ2
F)

m1−−→ (σ3
C ,σ

3, σ3
F) −→ · · · −→ (σ2q+2

C ,σ2q+2, σ2q+2
F)

in the separation game SGame(t) is declared winning when

∀i ∈ {1, . . . , 2q + 2}, (σiC ,σ
i, σiF) � Pi.

Note that the notion of winning play is closed under prefix.

Definition 11.4 A strategy strat of the separation game SGame(t) is winning when
it contains only winning plays, and moreover:

• the strategy strat contains every empty and winning play of the separation game,
• for every play p in the strategy strat, which can be extended by a move a played
by Adam into a winning play p ·a of the separation game SGame(t), there exists
a move e played by Eve such that p · a · e defines a play in the strategy strat.

Note that an empty and winning play of the separation game consists of a separated
state (σC ,σ, σF) satisfying the predicate (P,Γ, true), and in the very special case
when the trace t ∈

∣∣JCK
∣∣ is empty and returns, the predicate (Q,Γ, true).

We are now able to state the soundness theorem of concurrent separation logic,
which is established by structural induction on the derivation tree π of the Hoare
triple Γ ` {P}C {Q}.

Theorem 11.5 (Soundness) Every derivation tree π of Γ ` {P}C {Q} defines for
every execution trace t ∈ JCK a winning strategy strat(π, t) in the separation game
SGame(t) determined by the Hoare triple Γ ` {P}C {Q} and t.

The proof of the theorem is in the Appendix[1]. This statement is inspired by game
semantics, and the idea of a Curry-Howard correspondence between proofs (derivation
trees) and winning strategies. This interpretation of proofs implies the soundness of
concurrent separation logic in the traditional sense [5,13,2] by considering the case
when the context Γ is empty, and the environment is passive, in the following sense.

14

Mellies and Stefanesco

Definition 11.6 The environment is passive in a trace

s1
env−−→ s2

m1−−→ s3
env−−→ . . .

env−−→ s2p
mp−−→ s2p+1

env−−→ s2p+2

when every transition s2i+1
env−−→ s2i+2 by the environment does not alter the logical

state, and is thus the identity s2i+1 = s2i+2, for 0 ≤ i ≤ p.

Corollary 11.7 Suppose that the triple ∅ ` {P}C {Q} has been proved by a deriva-
tion tree π of concurrent separation logic, and that t ∈ JCK is an execution trace

s1
id−→ s1

m1−−→ s3
id−→ . . .

id−→ s2p
mp−−→ s2p+1

id−→ s2p+1

in which the Environment is passive, and such that s1 � P ∗ true. Then, the
execution trace t produces no error, in the technical sense that every machine step
mi : s2i+1 s2i+3 executed by the Code, for 0 ≤ i ≤ p − 1 is of the form

s2i+1 s2i+3
mi and thus does not produce any error at run-time. Moreover,

when t ∈
∣∣C ∣∣ returns, one has that:

∂1t � Q ∗ true .

Note that the predicate P ∗ true means that the logical state σ taken as input by
the Code C contains a fragment σC which satisfies the predicate P . The winning
strategy associated to π ensures that when the trace t returns, the Code C ends with
a fragment σ′C of the logical state σ′ returned as output.

References

[1] Appendix to a game semantics of concurrent separation logic.
URL http://stefanesco.com/documents/mfps17.pdf

[2] Balabonski, T., F. Pottier and J. Protzenko, Type soundness and race freedom for mezzo, in: FLOPS,
2014.

[3] Bornat, R., C. Calcagno, P. O’Hearn and M. Parkinson, Permission accounting in separation logic, in:
POPL, 2005.

[4] Bornat, R., C. Calcagno and H. Yang, Variables as resource in separation logic, ENTCS 155 (2006),
pp. 247–276.

[5] Brookes, S., A semantics for concurrent separation logic, in: CONCUR, 2004.

[6] Brookes, S., A revisionist history of concurrent separation logic, ENTCS 276 (2011), pp. 5 – 28.

[7] Dinsdale-Young, T., L. Birkedal, P. Gardner, M. J. Parkinson and H. Yang, Views: compositional
reasoning for concurrent programs, in: POPL, 2013.

[8] Jung, R., D. Swasey, F. Sieczkowski, K. Svendsen, A. Turon, L. Birkedal and D. Dreyer, Iris: Monoids
and invariants as an orthogonal basis for concurrent reasoning, in: POPL, 2015.

[9] Krebbers, R., R. Jung, A. Bizjak, J.-H. Jourdan, D. Dreyer and L. Birkedal, The essence of higher-order
concurrent separation logic, in: ESOP, 2017.

[10] OHearn, P. W., Resources, concurrency, and local reasoning, TCS 375 (2007), pp. 271–307.

[11] Parkinson, M. J., R. Bornat and C. Calcagno, Variables as resource in hoare logics, in: LICS, 2006, pp.
137–146.

[12] Reynolds, J. C., Separation logic: A logic for shared mutable data structures, in: LICS, 2002.

[13] Vafeiadis, V., Concurrent separation logic and operational semantics, ENTCS 276 (2011), pp. 335–351.

15

http://stefanesco.com/documents/mfps17.pdf

Mellies and Stefanesco

A Proof of Soundness

A.1 Preliminaries

A.1.1 Order on games
We can order separation games.

Definition A.1 Let G and G′ be two separation games whose underlying traces are
the same. Then we say that G is harder than G′ if, whenever a path p realizes G, it
also realizes G′.

Equivalently, for each corresponding predicate P of G and P ′ of G′,

∀σ ∈ State, σ � P ⇒ σ � P ′.

A.1.2 A sufficient condition to be a winning play
In the case of the games induced by Hoare triples, a strategy is a set of paths that
realize even-length prefixes of G, and such that, in addition, each play of Eve satisfies
the separated predicate that follows it.

Proposition A.2 Let Γ ` {P}C {Q} be a triple, let t ∈ JCK be an execution trace of
length 2p+1 and let (Pi)1≤i≤2p+2 be the separated predicates they induce. Suppose the
play (σiC ,σ

i, σiF)1≤i≤2p+2 is such that, for all i ∈ {1, . . . , 2p+1}, (σiC ,σ
i, σiF) � Pi+1,

then it is a winning play (in the sense of Definition 11.3).

A.1.3 Stability of well-defined boolean formulas
Lemma A.3 Let B be a boolean formula and t be a trace that is realized by a play
p. Call n1 the first separated state of p, and assume that n1 � {P,Γ, true}, for some
P and Γ such that P ⇒ B.

Then, if B is true in the first state of t, it is also true in the second state of t.

Proof If B only depends on variables owned by P , Adam cannot touch them. 2

In the remainder of this section, we define the strategy strat(π, t), for all proofs
π of a triple Γ ` {P}C {Q} and all t ∈ JCK, by structural induction on π.

A.2 Parallel composition

First, we prove the case of Par, which is the most interesting. Let C = C1 ‖ C2.
The strategy for the parallel composition will first be defined in a new graph, that
will keep the part of the memory state that belongs to C1 separated from the part
that belongs to C2, and then will be projected into G(SState). By appealing to
Proposition A.2, we only consider plays of even length.

Definition A.4 The states of the graph of parallel compostition are the 4-tuples
(σ1, σ2,σ, sF) such that their product is defined, as in Definition 8.1. It has 3 kinds
of moves:

• Eve1 moves (σ1, σ2,σ, σF)
m−→
1

(σ′1, σ2,σ
′, σF),

• Eve2 moves (σ1, σ2,σ, σF)
m−→
2

(σ1, σ
′
2,σ

′, σF),

• Adam moves (σ1, σ2,σ, σF) −→ (σ1, σ2,σ
′, σ′F),

16

Mellies and Stefanesco

with σ : LockName → State + {C1, C2, F}, and otherwise the same existence
conditions on the moves as in Definition 9.2.

We call a valid path of the graph of parallel compostition a path of even length,
that starts with an Adam move, and that is alternated (disregarding which Eve
is playing). We can project any valid path p on an even length path proj(p) of
G(SState) where Adam starts in the graph of separated states by multiplying the
first two components and forgetting which Eve is playing.

(σ1, σ2,σ, σF) 7→ (σ1 ∗ σ2,σ, σF)

Through this projection, we can define realization and strategies on these paths.
We now define the left and right projections of a valid path p of the graph of

parallel compostition, which give the subjective views of each execution thread, as
paths of the graph of separated states.

Definition A.5 To define proj1, first consider the function defined on the states in
the following way:

(σ1, σ2,σ, σF) 7→ (σ1,σ, σF ∗ σ2)

where

σ(r) =


C if σ(r) = C1

F if σ(r) = C2

σ(r) otherwise
and on the labels of the moves by mapping Eve1 moves to Eve moves and Eve2

moves to env moves. Then proj1 is defined as the function above, where consecutive
Environment moves are merged into one.

By merging consecutive Environment moves together, the image of a valid path is an
alternated even-length path of G(MState).

We are now ready to define strat(π, t), where π is the proof:
·····
π1

Γ ` {P1}C1 {Q1}

·····
π2

Γ ` {P2}C2 {Q2} Par
Γ ` {P1 ∗ P2}C {Q1 ∗Q2}

Let t ∈ JCK. By definition of J·K, there exist t1 ∈ JC1K and t2 ∈ JC2K such that
t ∈ (t1 ‖ t2).

We define the strategy strat(π, t) (in the graph of parallel compostition) such
that for all p ∈ strat(π, t),

proj1(p) ∈ strat(π1, t1) ∧ proj2(p) ∈ strat(π2, t2). (A.1)

Then, the strategy strat(π, t) in G(SState) will be obtained by projecting the
paths of the strategy using proj.

Note that an Adam move in a path p of the graph of parallel compostition
corresponds one-to-one with an Adam move in proj(p) of the graph of separated
states.

First, if n = (σC ,σ, σF) is a state that satisfies {P1 ∗ P2,Γ, true}, then by
definition, there exists σ1 and σ2 such that σi � Pi and proj(σ1, σ2,σ, σF) = n.

Suppose now that we have such a path p where Adam played last, and note

17

Mellies and Stefanesco

(σ1, σ2,σ, σF) its last state. By induction, we suppose that (A.1) holds.
Suppose, for instance, that the next instruction to be executed comes from t1.

Then, since strat(π1, t1) is a winning strategy, there exists a winning move by Eve
in response to the play proj1(p); it is of the form:

(σ1,σ, σF ∗ σ2)
m−→ (σ′1,σ

′, σF ∗ σ2)

therefore, the following move is winning in p:

(σ1, σ2,σ, σF)
m−→
1

(σ′1, σ2,σ
′, σF).

As noted before, Adam’s next move can be lifted from proj(p) to p.
By construction, the equations (A.1) still hold with the two new moves appended.

Proposition A.6 Assuming strat(π1, t1) and strat(π2, t2) are winning strategies,
strat(π, t) is a winning strategy.

A.3 The Sequential Composition

Let π be a proof of Γ ` {P}C {Q} and π′ be a proof of Γ ` {Q}C ′ {R}. Let us
denote by π̃ the proof of Γ ` {P}C;C ′ {R} built from π and π′.

Let t̃ ∈ JC;C ′K, then there exists t ∈ JCK and t ∈ JC ′K such that t̃ = t · t′. Define
strat(π̃, t̃) to be

strat(π, t) ∪
{
p · p′ | p ∈ strat(π, t), p′ ∈ strat(π′, t′), |p| = |t|

}
(A.2)

where the concatenation p · p′ on path of the graph of separated states is defined
similarly to the case of traces, only when the endpoints match.

Lemma A.7 Suppose strat(π, t) and strat(π′, t′) are winning strategies, then
strat(π̃, t̃) is winning as well.

Proof Denote by G, G′ and G̃ the games associated with t, t′, and t̃ (and their
Hoare triples). Notice that ∂1G = ∂0G and that G̃ is equal to G · G′ where the
junction point is {true,Γ, true} instead of {Q,Γ, true}. Moreover, the even length
prefixes of G ·G′ are:

G ∪
{
G · g′ | g′ is an even lenght prefix of G′

}
therefore strat(π̃, t̃) is a winning strategy for that game, which is harder than G̃.
Hence, strat(π̃, t̃) is a winning strategy. 2

A.4 Resource Introduction

We assume we have a winning strategy strat(π, t), for the triple Γ, r : J ` {P}C {Q}
and we want to construct one for Γ ` {P ∗ J} resource r do C {Q ∗ J} and t′ =

hide[r](t).
We can extend the hide[r] function to paths of the graph of separated states like

so:

(σC ,σ] [r 7→ σ], σF) 7−→ (σC ∗ σ,σ�dom(Γ), σF)

(σC ,σ, σF) 7−→ (σC ,σ�dom(Γ), σF)

and acts on the transitions labels like its counterpart on traces.

18

Mellies and Stefanesco

It is easy to check that if p is a path in the graph of separated states, then so is
hide[r](p).

Lemma A.8 If p realizes the trace t, then hide[r](p) realizes hide[r](t).

A.5 Locking

Let π be a proof of Γ ` {(P ∗ J) ∧B}C {Q ∗ J}, and π′ be that of the proof built
from π using the rule With. Let t′ ∈ Jwith r whenB do CK.

Let t ∈ JCK such that t′ ∈ whentrue[B](inside[r]({t})). Then, since the first
instruction of t′ is P (r), Adam gives Eve σ ∈ State such that: σ � J . That is,
Adam’s move is of the form:

(σC ,σ, σF)
env−−→ (σC ∗ σ,σ′, σ′F)

with r ∈ dom(σ′). And, by hypothesis,~(σC ∗σ,σ′, σF) � B (and B is well defined,
hence there is no error).

Therefore, that state satisfies the triple {(P ∗J)∧B,Γ, true}, and thus is a valid
starting point for t. Eve can therefore play like strat(π, t) until the end of t. Let p
be that play. If t ∈

∣∣C ∣∣, then the last node n of p satisfies {Q ∗ J,Γ, true}, and thus
Eve can give back the resource r.

A.6 Framing

Let π be a proof of Γ ` {P}C {Q}, t ∈ JCK and R be a predicate. Let π′ be the
following proof:

·····
π

Γ ` {P}C {Q}
Frame

Γ ` {P ∗R}C {Q ∗R}
By definition, plays of G′, the game associated to π and t, start with a separated
state n = (σC ,σ, σF) satisfying {P ∗R,Γ, true}, thus σC = σ̄C ∗ σR, with σR � R
and σ̄C � P . That is, in each play of strat(π′, t) that start with n, σR will be a
factor of the first component. It is possible because Adam cannot change the first
component of states, and because Eve can respond to a play where σR is in the third
component, by playing like strat(π, t). More formally, if p ∈ strat(π′, t) starts with
n, the image of p by the function on states

(σC ∗ σR,σ, σF) 7→ (σC ,σ, σF ∗ σF)

belongs to strat(π, t).

Lemma A.9 strat(π′, t) is a winning strategy.

19

Mellies and Stefanesco

A.7 Conditional statements

Let C1, C2 be commands, E be an arithmetic expression, and C ′ be the command
if E then C1 else C2. Let π′ be the proof:

P ⇒ def(B)

·····
π1

Γ ` {P ∧B}C1 {Q}

·····
π2

Γ ` {P ∧ ¬B}C2 {Q} If
Γ ` {P}C ′ {Q}

Let t ∈ JC ′K. We build the strategy strat(π′, t). A play starts at a state n that
satisfies {P,Γ, true}, and since P ⇒ def(B), the first Code transition in t does not
fail.

Let us suppose, for example, that B is true in~n; then t = ε · t1, with ε ∈ JnopK
and t1 ∈ JC1K. Moreover, the next move of Adam is necessarily a separated state that
satisfies {P ∧B,Γ, true}, so strat(π, t) can then behave exactly like strat(π1, t1).

It is easy to see that:

Lemma A.10 strat(π′, t) is a winning strategy.

A.8 Loops

Let C be a command, I be a predicate and B be a boolean formula. Assume π′ is
the proof:

I ⇒ def(B)

·····
π

Γ ` {I ∧B}C {I}
While

Γ ` {P}C ′ {Q}
where C ′ is whileB do C. Let t ∈ JC ′K, by definition of the semantics for while, t
can be decomposed as

t =

(
k∏
i=0

tεi · ti

)
· tk+1

with tεi ∈
∣∣whentrue[B](JnopK)

∣∣, ti ∈ ∣∣JCK
∣∣ for 0 ≤ i ≤ k and tk+1 ∈ F (JCK) (F is

defined in §6).
Let idstrat be the identity strategy

idstrat =
{
n1 → n2 → n2 → n3|∀n1, n2, n3

}
.

We can define the strategy associated to while as:

strat(π′, t) =
k+1∏
i=0

idstrat · strat(π, ti).

Lemma A.11 strat(π, t) is a winning strategy.

Proof Let G be the game associated to Γ ` {I}C ′ {I ∧ ¬B} and t, it can be
decomposed in a similar way as t and the strategy:

G =

(
k∏
i=0

Gid(tεi) ·Gi

)
·Gk+1.

20

Mellies and Stefanesco

where for i ≤ k, Gid(tεi) is the game whose underlying trace is tεi ∈ JnopK, whose
precondition is I and whose post-condition is I ∧B; and Gi is the game induced by
Γ ` {I ∧B}C {I} and ti.

None of the transitions of t are errors, since, by induction, strat(π, ti) is a
winning strategy for Gi, and idstrat is a winning strategy for Gid.

If t ∈
∣∣JC ′K∣∣, then the end of t comes from whenfalse[B](JnopK), therefore the last

two states satisfy ¬B (by lemma A.3). 2

B Additional Material on the Semantics

B.1 Handling errors in the semantics

We leave the way the errors are handled unspecified: the semantics is parameterized
by a function

Handler : Code×MState→℘(MState).

We only ask that Handler be total, because, in the sequel, it allows for a more regular
definition of the interactive trace semantics. An excerpt definition of those transitions
is in Figure C.1, the full definition can be found in the Appendix. Note that we use
Handler as a non-deterministic function with range MState.

The full definition of whenabort[P,C] makes use of Handler as follows:

Definition B.1 The transition system whenabort[P,C] associated to a predicate

P : MState→ {true, false,abort}

on memory states and to a code C ∈ Code is defined as a set of traces of the form

(σ1, L1)
env−−→ (σ2, L2)

nop−−→ (σ3, L3)
env−−→ (σ4, L4)

such that P (σ2, L2) = abort, and L2 = L3. The set of returning traces is empty:∣∣whenabort[P,C]
∣∣ = ∅. (For more details, see the Appendix).

B.2 The Operational Semantics

We give our language an operational semantics very close to [13], we define it as a
labeled transition system in Figures B.1 and B.2 In order to keep track of which
thread holds which lock in the nodes of the labeled transition system, we add,
following [13], a new command, within r do C which represents the state of a tread
that has acquired r previously and not yet released it.

B.3 Relating the Two Semantics

The goal of the remainder of this section is to relate the operational semantics above
to the interactive semantics of the previous section.

We define the set of operational traces in the same way as the execution traces.

Definition B.2 (Operational Traces) An operational trace t is a sequence of
machine configurations

(C1, s1) −−→ (C2, s2)
m1−−→ (C3, s3) −−→ · · ·

21

Mellies and Stefanesco

B(σ) = true

(ifB then C1 else C2, (σ, L)) (C1, (σ, L))
nop

B(σ) = false

(ifB then C1 else C2, (σ, L)) (C2, (σ, L))
nop

B(σ) = abort

(ifB then C1 else C2, (σ, L)) Handler(ifB then C1 else C2, (σ, L))
nop

B(σ) = true

(whileB do C, (σ, L)) (C; whileB do C, (σ, L))
nop

B(σ) = false

(whileB do C, (σ, L)) (skip, (σ, L))
nop

B(σ) = abort

(whileB do C, (σ, L)) Handler(whileB do C, (σ, L))
nop

Figure B.1. Operational semantics (control flow)

with an odd number of transitions and whose odd transitions satisfy C2k+1 = C2k+2,

and whose even transitions s2k
mk−−−−−→ s2k+1 for 1 ≤ k ≤ p are transitions as

defined in Figure B.2. We denote by OperationalTraces the set of operational
traces.

Note that this closely matches how the environment is handled in [7].
Like in the case of traces, we define operational transition systems.

Definition B.3 (Interactive Operational Semantics) Every code C ∈ Code

induces a code transition system

[C]oper ⊆ OperationalTraces

as follows: if t is an operational trace, t ∈ [C]oper if starts with a configuration of the
form (C, s). A trace returns if its last configuration is of the form (skip, s).

Definition B.4 Given an operational trace t ∈ OperationalTraces, we denote
t ∈ Traces the trace where we have projected the configurations on the second
component: (C, s) 7→ s. We extend this definition to a function from operational
transition systems to transition systems.

Theorem B.5 For every C ∈ Code, [C]oper = JCK.

Proof We proceed by induction on C.

Instructions
The result is obvious, since C corresponds to a instruction m.

22

Mellies and Stefanesco

(C1, s) (C ′1, s
′)m

(C1 ‖ C2, s) (C ′1 ‖ C2, s
′)m

(C2, s) (C ′2, s
′)m

(C1 ‖ C2, s) (C1 ‖ C ′2, s′)
m

(C1, s) (C ′1, s
′)m

(C1;C2, s) (C ′1;C2, s
′)m

(C1, s) (C ′1, s
′)m

(C1;C2, s) (C ′1, s
′)m

(C, s) (C ′, s′)m m ∈ {P (r), V (r)}

(resource r do C, s) (resource r do C ′, s)
nop

(C, s) (C ′, s′)m m /∈ {P (r), V (r)}

(resource r do C, s) (resource r do C ′, s)m

B(σ) = true r /∈ L

(with r whenB do C, (σ, L)) (within r do C, (σ, L ∪ {r}))P (r)

B(σ) = abort

(with r whenB do C, (σ, L)) Handler(with r whenB do C, (σ, L))
nop

(C, s) (C ′, s′)m

(within r do C, s) (within r do C ′, s′)m

r ∈ L

(within r do skip, (σ, L)) (skip, (σ, L \ {r}))V (r)

m ∈ Instr s s′m

(m, s) (skip, s′)m

Figure B.2. Operational semantics (continued)

C =⇒ C skip;C =⇒ C skip ‖ skip =⇒ skip resource r do skip =⇒ skip

C1 =⇒ C2 (C2, s) (C3, s′)
m C3 =⇒ C4

(C1, s) (C4, s′)
m

Figure B.3. Rewriting rules

23

Mellies and Stefanesco

Sequential composition
Suppose now that C = C1;C2. Let t ∈ JCK, there are two cases. If t ∈ JC1K, then

by induction hypothesis,

t ∈ [C1]oper ⊆ [C]oper.

Otherwise, there exist t1 ∈
∣∣JC1K

∣∣ and t2 ∈ JC2K such that t = t1 · t2. By the
induction hypothesis, t1 ∈

∣∣[C1]oper
∣∣; therefore there exists an operational trace

τ1 ∈ [C1]oper such that τ1 = t1 and such that ∂1τ1 is of the form (skip, s). Thus,
there is an operational trace τ ′1 from C1;C2 to skip;C2. Moreover by the induction
hypothesis there exists a trace τ2 ∈ [C2]oper such that τ2 = t2. We can glue τ ′1 and
τ2 thanks to the rewrite rule skip;C2 =⇒ C2 into an operational trace τ such that
τ = t.

Hence, we have proved the inclusion

JC1;C2K ⊆ [C1;C2]oper.

Let τ ∈ [C1;C2]oper. The operational trace τ induces an operational trace
τ1 ∈ [C1]oper since the execution of C1;C2 starts by executing C1. Depending on
whether the execution of C1 returns, we can have another trace τ2 ∈ [C2]oper. We
can deduce from the induction hypothesis that τ ∈ JC1;C2K.

Parallel composition
Suppose now that C = C1 ‖ C2. It suffices to show that:

[C1 ‖ C2]oper = JC1K ‖ JC2K.

It follows form the fact that [C1 ‖ C2]oper = [C1]oper ‖ [C2]oper. This is the case
because an operational trace is obtained by applying one of the two rules that
execute an instruction from C1 or C2, alternatively with an arbitrary transition
from the environment. And each transition from, say, C1 can be simulated by the a
Environment transition in JC2K.

Resource introduction
Let C ′ = resource r do C, with C ∈ Code. Let t′ ∈ JC ′K, there exists t ∈ JCK

such that t′ = hide[r](t). By the induction hypothesis, there is an operational trace
τ such that τ = t. By applying repeatedly the two rules for resource of Figure B.2,
we obtain a trace τ ′ such that τ ′ = t′.

Conversely, if τ ′ ∈ [C ′]oper, all the Code transtitions must come from the aforemen-
tioned two rules and from another operational trace τ ∈ [C]oper. By the hypothesis
induction, τ ∈ JCK. Thus τ ′ ∈ JC ′K.

Locking
Let C ′ = withB when r do C, and let t ∈ JC ′K. By definition of the semantics,

JC ′K = whentrue[B]
(
inside[r]

(
JCK

))
∪ whenabort[B,C ′].

Suppose t ∈ whentrue[B]
(
inside[r]

(
JCK

))
. If B is false or r ∈ L in the second state

of t, then t has length 1, and, clearly, t ∈ [C ′]oper. If B is true and r /∈ L, then

24

Mellies and Stefanesco

t ∈ JP (r)K; T; JV (r)K, and it corresponds to an operational trace generated the rule
for taking the lock, then, by repeated application of the rule for within and by
induction, an operational trace of [C]oper, and then the rule to release the lock.

Conversly, an operational trace τ ∈ [C ′]oper is necessarily generated as described
above, so its erasure τ is in JC ′K.

Conditional statement
This case is similar to the previous one and the one for sequential composition,

since, by definition, the semantics of C ′ = ifB then C1 else C2 is:

JifB then C1 else C2K =

whentrue[B]
(
JnopK

)
; JC1K

∪ whenfalse[B]
(
JnopK

)
; JC2K

∪ whenabort[B,C ′],

Loops
Similar to the case for conditional statements. 2

25

Mellies and Stefanesco

C Full Definitions

(σ, L) (σ, L)
nop

E(σ) = v

(σ, L) (σ[x 7→ v], L)x:=E

E(σ) = abort

(σ, L) Handler(x := E, (σ, L))x:=E

E(σ) = l l ∈ hdom(σ)

(σ, L) (σ[x 7→ σ(l)], L)
x:=[E]

E(σ) = abort or E(σ) /∈ hdom(σ)

(σ, L) Handler(x := [E], (σ, L))
x:=[E]

E1(σ) = l E2(σ) = v l ∈ hdom(σ)

(σ, L) (σ[l 7→ v], L)
[E1]:=E2

E1(σ) = abort or E2(σ) = abort or E1(σ) /∈ hdom(σ)

(σ, L) Handler([E1] := E2, (σ, L))
[E1]:=E2

E(σ) = v l /∈ hdom(σ)

(σ, L) (σ[x 7→ l]] [l 7→ v], L)
x:=alloc(E)

E(σ) = abort

(σ, L) Handler(x := alloc(E), (σ, L))
x:=alloc(E)

E(σ) = l l ∈ hdom(σ)

(σ, L) (σ \ l, L)
dispose(E)

E(σ) = abort or l /∈ hdom(σ)

(σ, L) Handler(dispose(E), (σ, L))
dispose(E)

r /∈ L

(σ, L) (σ, L] {r})P (r)

r ∈ L

(σ, L) (σ, L \ {r})V (r)

r /∈ L

(σ, L) Handler(V (r), (σ, L))
V (r)

Figure C.1. Semantics of instructions

26

Mellies and Stefanesco

Aff
Γ ` {Own>(x) ∗X = E}x := E {Own>(x) ∗ x = X}

Store
Γ ` {E 7→ −} [E] := E′ {E 7→ E′}

x /∈ fv(E)
Load

Γ ` {E 7→p v ∗Own>(x)}x := [E] {E 7→p v ∗Own>(x) ∗ x = v}

Alloc
Γ ` {Own>(x)}x := alloc(E) {Own>(x) ∗ x = l ∗ l 7→ E}

Disp
Γ ` {E 7→ −} disposeE {emp}

Γ ` {P}C {Q} Γ ` {Q}C ′ {R}
Seq

Γ ` {P}C;C ′ {R}

P ⇒ def(B) Γ ` {P ∧B}C1 {Q} Γ ` {P ∧ ¬B}C2 {Q} If
Γ ` {P} ifB then C1 else C2 {Q}

I ⇒ def(B) Γ ` {I ∧B}C {I}
While

Γ ` {I} whileB do C {I ∧ ¬B}

Γ is precise Γ ` {P1}C {Q1} Γ ` {P2}C {Q2} Conj
Γ ` {P1 ∧ P2}C {Q1 ∧Q2}

Γ, r : J ` {P}C {Q}
Res

Γ ` {P ∗ J} resource r do C {Q ∗ J}

Γ ` {P1}C {Q1} Γ ` {P2}C {Q2} Disj
Γ ` {P1 ∨ P2}C {Q1 ∨Q2}

Γ, r : J ` {P}C {Q}
Res

Γ ` {P ∗ J} resource r do C {Q ∗ J}

P ⇒ def(B) Γ ` {(P ∗ J) ∧B}C {Q ∗ J}
With

Γ, r : J ` {P} with r whenB do C {Q}

Γ ` {P1}C1 {Q1} Γ ` {P2}C2 {Q2} Par
Γ ` {P1 ∗ P2}C1 ‖ C2 {Q1 ∗Q2}

Γ ` {P}C {Q}
Frame

Γ ` {P ∗R}C {Q ∗R}

P ′ ⇒ P Γ ` {P}C {Q} Q⇒ Q′
Conseq

Γ ` {P ′}C {Q′}
Figure C.2. Inference rules of Concurrent Separation Logic

27

	Introduction
	Related Work
	Machine states and machine instructions
	Execution traces
	Transition Systems
	Trace semantics of the concurrent language
	Logical States
	Separated states
	The graphs of machine and separated states
	Separation games
	Soundness theorem
	References
	Proof of Soundness
	Preliminaries
	Parallel composition
	The Sequential Composition
	Resource Introduction
	Locking
	Framing
	Conditional statements
	Loops

	Additional Material on the Semantics
	Handling errors in the semantics
	The Operational Semantics
	Relating the Two Semantics

	Full Definitions

